模型不足的元学习(MAML)已越来越流行,对于可以通过一个或几个随机梯度下降步骤迅速适应新任务的训练模型。但是,与标准的非自适应学习(NAL)相比,MAML目标更难优化,并且几乎没有理解MAML在各种情况下的溶液的快速适应性方面的改善。我们通过线性回归设置进行分析解决此问题,该设置由简单而艰难的任务组成,其中硬度与梯度下降在任务上收敛的速率有关。具体而言,我们证明,为了使MAML比NAL获得可观的收益,(i)任务之间的硬度必须有一定的差异,并且(ii)艰苦任务的最佳解决方案必须与中心远离远离中心。简单任务最佳解决方案的中心。我们还提供数值和分析结果,表明这些见解适用于两层神经网络。最后,我们提供了很少的图像分类实验,可以支持我们何时使用MAML的见解,并强调培训MAML对实践中的艰巨任务的重要性。
translated by 谷歌翻译
Recent object detection models for infrared (IR) imagery are based upon deep neural networks (DNNs) and require large amounts of labeled training imagery. However, publicly-available datasets that can be used for such training are limited in their size and diversity. To address this problem, we explore cross-modal style transfer (CMST) to leverage large and diverse color imagery datasets so that they can be used to train DNN-based IR image based object detectors. We evaluate six contemporary stylization methods on four publicly-available IR datasets - the first comparison of its kind - and find that CMST is highly effective for DNN-based detectors. Surprisingly, we find that existing data-driven methods are outperformed by a simple grayscale stylization (an average of the color channels). Our analysis reveals that existing data-driven methods are either too simplistic or introduce significant artifacts into the imagery. To overcome these limitations, we propose meta-learning style transfer (MLST), which learns a stylization by composing and tuning well-behaved analytic functions. We find that MLST leads to more complex stylizations without introducing significant image artifacts and achieves the best overall detector performance on our benchmark datasets.
translated by 谷歌翻译
As text generated by large language models proliferates, it becomes vital to understand how humans engage with such text, and whether or not they are able to detect when the text they are reading did not originate with a human writer. Prior work on human detection of generated text focuses on the case where an entire passage is either human-written or machine-generated. In this paper, we study a more realistic setting where text begins as human-written and transitions to being generated by state-of-the-art neural language models. We show that, while annotators often struggle at this task, there is substantial variance in annotator skill and that given proper incentives, annotators can improve at this task over time. Furthermore, we conduct a detailed comparison study and analyze how a variety of variables (model size, decoding strategy, fine-tuning, prompt genre, etc.) affect human detection performance. Finally, we collect error annotations from our participants and use them to show that certain textual genres influence models to make different types of errors and that certain sentence-level features correlate highly with annotator selection. We release the RoFT dataset: a collection of over 21,000 human annotations paired with error classifications to encourage future work in human detection and evaluation of generated text.
translated by 谷歌翻译
Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision. Further, there is mounting evidence that LLMs may have potential in information-seeking scenarios. We believe the ability of an LLM to attribute the text that it generates is likely to be crucial for both system developers and users in this setting. We propose and study Attributed QA as a key first step in the development of attributed LLMs. We develop a reproducable evaluation framework for the task, using human annotations as a gold standard and a correlated automatic metric that we show is suitable for development settings. We describe and benchmark a broad set of architectures for the task. Our contributions give some concrete answers to two key questions (How to measure attribution?, and How well do current state-of-the-art methods perform on attribution?), and give some hints as to how to address a third key question (How to build LLMs with attribution?).
translated by 谷歌翻译
Transformers have proved to be very effective for visual recognition tasks. In particular, vision transformers construct compressed global representations through self-attention and learnable class tokens. Multi-resolution transformers have shown recent successes in semantic segmentation but can only capture local interactions in high-resolution feature maps. This paper extends the notion of global tokens to build GLobal Attention Multi-resolution (GLAM) transformers. GLAM is a generic module that can be integrated into most existing transformer backbones. GLAM includes learnable global tokens, which unlike previous methods can model interactions between all image regions, and extracts powerful representations during training. Extensive experiments show that GLAM-Swin or GLAM-Swin-UNet exhibit substantially better performances than their vanilla counterparts on ADE20K and Cityscapes. Moreover, GLAM can be used to segment large 3D medical images, and GLAM-nnFormer achieves new state-of-the-art performance on the BCV dataset.
translated by 谷歌翻译
Drawing from the resources of psychoanalysis and critical media studies, in this paper we develop an analysis of Large Language Models (LLMs) as automated subjects. We argue the intentional fictional projection of subjectivity onto LLMs can yield an alternate frame through which AI behaviour, including its productions of bias and harm, can be analysed. First, we introduce language models, discuss their significance and risks, and outline our case for interpreting model design and outputs with support from psychoanalytic concepts. We trace a brief history of language models, culminating with the releases, in 2022, of systems that realise state-of-the-art natural language processing performance. We engage with one such system, OpenAI's InstructGPT, as a case study, detailing the layers of its construction and conducting exploratory and semi-structured interviews with chatbots. These interviews probe the model's moral imperatives to be helpful, truthful and harmless by design. The model acts, we argue, as the condensation of often competing social desires, articulated through the internet and harvested into training data, which must then be regulated and repressed. This foundational structure can however be redirected via prompting, so that the model comes to identify with, and transfer, its commitments to the immediate human subject before it. In turn, these automated productions of language can lead to the human subject projecting agency upon the model, effecting occasionally further forms of countertransference. We conclude that critical media methods and psychoanalytic theory together offer a productive frame for grasping the powerful new capacities of AI-driven language systems.
translated by 谷歌翻译
Multimodal integration of text, layout and visual information has achieved SOTA results in visually rich document understanding (VrDU) tasks, including relation extraction (RE). However, despite its importance, evaluation of the relative predictive capacity of these modalities is less prevalent. Here, we demonstrate the value of shared representations for RE tasks by conducting experiments in which each data type is iteratively excluded during training. In addition, text and layout data are evaluated in isolation. While a bimodal text and layout approach performs best (F1=0.684), we show that text is the most important single predictor of entity relations. Additionally, layout geometry is highly predictive and may even be a feasible unimodal approach. Despite being less effective, we highlight circumstances where visual information can bolster performance. In total, our results demonstrate the efficacy of training joint representations for RE.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
In this paper, we present the Multi-view Extended Videos with Identities (MEVID) dataset for large-scale, video person re-identification (ReID) in the wild. To our knowledge, MEVID represents the most-varied video person ReID dataset, spanning an extensive indoor and outdoor environment across nine unique dates in a 73-day window, various camera viewpoints, and entity clothing changes. Specifically, we label the identities of 158 unique people wearing 598 outfits taken from 8, 092 tracklets, average length of about 590 frames, seen in 33 camera views from the very large-scale MEVA person activities dataset. While other datasets have more unique identities, MEVID emphasizes a richer set of information about each individual, such as: 4 outfits/identity vs. 2 outfits/identity in CCVID, 33 viewpoints across 17 locations vs. 6 in 5 simulated locations for MTA, and 10 million frames vs. 3 million for LS-VID. Being based on the MEVA video dataset, we also inherit data that is intentionally demographically balanced to the continental United States. To accelerate the annotation process, we developed a semi-automatic annotation framework and GUI that combines state-of-the-art real-time models for object detection, pose estimation, person ReID, and multi-object tracking. We evaluate several state-of-the-art methods on MEVID challenge problems and comprehensively quantify their robustness in terms of changes of outfit, scale, and background location. Our quantitative analysis on the realistic, unique aspects of MEVID shows that there are significant remaining challenges in video person ReID and indicates important directions for future research.
translated by 谷歌翻译
In collider-based particle and nuclear physics experiments, data are produced at such extreme rates that only a subset can be recorded for later analysis. Typically, algorithms select individual collision events for preservation and store the complete experimental response. A relatively new alternative strategy is to additionally save a partial record for a larger subset of events, allowing for later specific analysis of a larger fraction of events. We propose a strategy that bridges these paradigms by compressing entire events for generic offline analysis but at a lower fidelity. An optimal-transport-based $\beta$ Variational Autoencoder (VAE) is used to automate the compression and the hyperparameter $\beta$ controls the compression fidelity. We introduce a new approach for multi-objective learning functions by simultaneously learning a VAE appropriate for all values of $\beta$ through parameterization. We present an example use case, a di-muon resonance search at the Large Hadron Collider (LHC), where we show that simulated data compressed by our $\beta$-VAE has enough fidelity to distinguish distinct signal morphologies.
translated by 谷歌翻译